
20th IMEKO TC4 International Symposium and

18th International Workshop on ADC Modelling and Testing

Research on Electric and Electronic Measurement for the Economic Upturn

Benevento, Italy, September 15-17, 2014

Error Propagation in Software Measurement

& Estimation

Luca Santillo
1

1
GUFPI-ISMA (Gruppo Utenti Function Point Italia – Italian Software Metrics Association),

luca.santillo@gmail.com

Abstract – The real challenge in any activity is to

minimize as much as possible the error between an

estimate and an actual value, whatever the
phenomenon to be evaluated. When dealing with

software, the number of proxies can be quite high: the

application of an algorithm including one or more

independent variables (measures) is finalized to

provide one or more output variables (estimates) for a

series of measures typically about effort, cost, time,

quality or other aspects of the software being

developed. Recently ISO proposed also a specific

standard on Measurement (ISO/IEC 15939), with a

glossary aligned to the Metrology field and to the

International Vocabulary of Metrology (VIM).
Estimation could be seem as a “black art”, but error is

intrinsic in estimates and must be managed. Thus,

regardless of the estimation model (algorithm) being

used, practitioners must face the uncertainty aspects

of such process: errors in initial measures do affect

the derived metrics (or estimated values for indirect

variables). Measurement theory does provide an

accurate way to evaluate such error propagation for

algorithmic derivation of variable values from direct

measures, as in the GUM (Guide to the expression of

Uncertainty in Measurement).

Although some software estimation models already
propose confidence ranges on their results, the formal

application of error propagation can yield some

surprising results, depending on the mathematical

functional form underlying the model being

examined. Moving from a previous paper, this one

will discuss the propagation of errors in software

measurement and shows with some application and

examples based on some of the most common software

measurement methods and estimation models as

Function Point Analysis (FPA) for product sizing

issues and COCOMO (Cost Construction Model) for
effort and/or duration issues as well as other ones,

updating also the discussion to new advancement in

the Software Quality field, in particular about product

NFRs (Non-Functional Requirements). Few cases and

examples will be shown, in order to stimulate a critical

analysis for methods and models being examined from

a possibly new perspective, with regards to the

accuracy they can offer in practice.

Keywords – Measurement, estimation, accuracy,
propagation of uncertainty, error analysis.

 I. INTRODUCTION

In science, the terms uncertainties or errors do not refer

formally to mistakes, but rather to those uncertainties that

are inherent in all measurements and can never be

completely eliminated. A large part of a measurer’s effort

should be devoted to understanding these uncertainties

(error analysis) so that appropriate conclusions can de

drawn from variable observations. Measurements can be

quite meaningless without any knowledge of their
associated errors.

In science and engineering, numbers without

accompanying error estimates are suspect and possibly

useless. This holds true also in software engineering – for

every measurement, one should record the uncertainty in

the measured quantity.

Beyond the well-known and easily understood

definition of systematic errors and random errors (which

is referred to any single quantity being measured, and is

no further examined hereby), we point our attention to the

consequences of using measures with unavoidable errors
within the application of some formula (algorithm) to

derive further quantities, as is the case of total size from

components’ size for a software system, or of effort, time

or cost estimation from the total size of the system being

examined. In science, this analysis is usually denoted as

error propagation (or propagation of uncertainty).

This paper highlights the general phenomenon, for

which it always holds true that generic uncertainties from

two or more deriving quantities always sum up to provide

a larger uncertainty on the derived quantity. This also

results in a formal approach to risk analysis, in terms of

what-if scenarios where input quantities change with
respect to their initial, planned, or desired values.

 II. ERROR PROPAGATION THEORY – A SUMMARY

When the quantity to be determined is derived from

several measured quantities, and if the measured

quantities are independent of each other (that is,

contributions are not correlated), the uncertainty “�” of

each contribution may be considered separately [1]. For

example, suppose that we have measured the quantities

��������	
���
�

������� 763

time t ± �t and height h ± �h for a falling mass (the �’s

refer to the relatively small uncertainties in t and h). We

have determined that

h = 5.32 ± 0.02 cm

t = 0.103 ± 0.001 s
From physics, we can find the acceleration g from the

relation:

g = g(h,t) = 2h/t
2

which yields g = 10.029… m/s2. (the well-known value

for g from physics is actually g = 9.80665… m/s2). To

find the uncertainty in the derived value of g caused by
the uncertainties in h and t, we consider separately the

contribution due to the uncertainty in h and the

contribution due to the uncertainty in t, combined in

quadrature:

2 2

t hg g g
δ δ δ= +

where for instance we denote the contribution due to

the uncertainty in t by the symbol �g
t
 (read as “delta-g-t”

or “uncertainty in g due to t”). The basis of the quadrature

addition is an assumption that the measured quantities

have a normal, or Gaussian, distribution about their mean

values.

A typical method by which one may calculate the

contributions of direct measured independent variables in

the dependent variable being derived is the derivative

method. The basic idea is to determine by how much the

derived quantity would change if any of the independent

variables were changed by its uncertainty.

Let the function f = f(x1, …, xN) be the formula used to
derive the dependent variable f from the N independent

variables xi, …, xN, and let δxi be the estimated error on
the value measured for each variable xi. That is, the true

value of xi belongs to the interval (xi ± δxi) for each i from
1 to N. Then the true value of f belongs to the interval

[f(x1, …, xN) ± δf], where δf is given from the derivatives
formula:

2 22

1

1 1

N

i N

i i N

f f f
f x x x

x x x
δ δ δ δ

=

� � � �� �∂ ∂ ∂
= = + +� � � �� �� �� � � �∂ ∂ ∂� �� � � �
� �

The derivative (�f/�xi) is a partial derivative (simply

put, when taking a partial derivative with respect to one

variable, treat any other variable as constant). Since each

uncertain variable will increase, not decrease the final

uncertainty, we put the uncertainty in f due to the

uncertainty in xi as the absolute value. In the cited

example for acceleration g = g(h,t) we have:

3
4

tg t t
g t h tδ δ δ= ∂ ∂ = −

2
2

hg h h
g h tδ δ δ= ∂ ∂ =

so that:
2 2

2 2 2 2

3 2

4 2
19.8 cm/s 0.2 m/s

t hg g g t h

h

t t
δ δ δ δ δ

� � � �
= + = + = ≈� � � �

� � � �

For simple formulas, as addiction, subtraction,

multiplication and division of two variables, one can

easily find that the uncertainty is calculated as in the

following.

If f = f(x,y) = x + y, then
2 2

f x y
δ δ δ= + .

If f = f(x,y) = x - y, then also
2 2

f x y
δ δ δ= +

(uncertainties always add).

If f = f(x,y) = x · y, then
2 2 2 2

f x y
y xδ δ δ= + .

If f = f(x,y) = x / y, then
2 2

2 2

2

1
f y x

x

y y
δ δ δ

� � � �
= +� � � �

� � � �

.

Notice how the variables values are mixed together in

the uncertainty calculation for multiplication and

division. It’s also worth pointing out that fractional or

percentage uncertainties in multiplication and division

behave much like absolute uncertainties in addition. In

other words, f = f(x,y) = x · y:
22 2 2 2 2

x yf yx
y x

f xy x y

δ δδ δδ+ � �� �
= = + � �� �

� � � �

with the same result holding if f = f(x,y) = x / y.

If either x or y is a constant or has a relatively small

fractional uncertainty, then it can be ignored and the total

uncertainty is just due to the remaining term.

Furthermore, if one of the measured quantities is raised

to a power, the fractional or percentage uncertainty due to

that quantity is merely multiplied by that power before

adding the result in quadrature. For the original example:

() ()
2 2

3 2 22

2

4 2 2

2

t hg yt
h t t

g h t t y

δ δδ δδ+ � �� �
= = + � �� �

� � � �

For the values in our example, �h/h = 0.5% and �t/t =

1% (so 2 �t/t = 2%), so we can see that the contribution

from the uncertainty in h is negligible compared to the

contribution from t. We can therefore conclude (as

confirmed by previous calculation) that the fractional

uncertainty in our measured result for g is about 2%:

g = 10.0 ± 0.2 m/s
2

As a reference, table 1 shows the uncertainty of simple

functions, resulting from independent variables A, B, C,

with uncertainties �A, �B, �C, and a precisely-known

constant c.

764

Table 1. Example formulas.

Function Function uncertainty

X = A ± B (�X)² = (�A)² + (�B)²

X = cA �X = c �A

X = c(A×B) or X =
c(A/B)

(�X/X)² = (�A/A)² +
(�B/B)²

X = cAn �X/X = |n| (�A/A)

X = ln (cA) �X = �A/A

X = exp(A) �X/X = �A

 III. APPLICATIONS TO SOFTWARE
MEASUREMENT – A SIMPLE EXAMPLE

Generally, when measuring the functional size the

measurer has to:

• identify (classify & count) the base functional

components;

• assign a size value to each component;

• combine the information above.

For instance, in the IFPUG method [2] one has to

identify logical files and elementary processes. Logical

files are classified as “internal” (ILF) or “external” (EIF)

with respect to the boundary of the software being

measured, with different size assignments on a low –

average – high complexity scale: 7/10/15 and 5/7/10

unadjusted function points, respectively. Elementary

processes are classified as “input” (EI), “output” (EO),
and “enquiry” (EQ) with respect to the processing logic

being performed, with different size assignments on a

low/average/high complexity scale: 3/4/6 for inputs and

enquiries, 4/5/7 for outputs.

The (unadjusted) functional size formula for

IFPUG could be expressed as:
SIZE(UFP) = 7 × NILF-LOW + 10 × NILF-

AVERAGE + 15 × NILF-HIGH +

 5 × NEIF-LOW + 7 × NEIF-

AVERAGE + 10 × NEIF-HIGH +

 3 × NEI-LOW + 4 × NEI-

AVERAGE + 6 × NEI-HIGH +
 4 × NEO-LOW + 5 × NEO-

AVERAGE + 7 × NEO-HIGH +

 3 × NEQ-LOW + 4 × NEQ-

AVERAGE + 6 × NEQ-HIGH

With respect to such formula, if the measurer fails in

identifying a function (file or process) and/or (s)he counts
a function that should NOT be counted according to the

measurement rules, (s)he is introducing an error in a

single value for NA-B where “A” denotes the type of the

function, and “B” the complexity rating. If the measurer

is correct in identifying a function, but (s)he assign the

wrong complexity value to it, (s)he introducing a double

error, since the function is NOT counted under the correct

figure AND it is wrongly counted under another figure.

For sake of readability, we rewrite the formula in

abbreviated form as:

S = S(N11, N12, N13,…,N51) =

7N11 + 10N12 + 15N13 +7N21 + 10N22 + 15N23 +

7N31 + 10N32 + 15N33 +7N41 + 10N42 + 15N43

+7N51 + 10N52 + 15N53

This formula is easily recognized as a combination of

additions and multiplications, where the multiplication

coefficients are fixed by definition of the measurement

methods, and the measures has to determine fifteen

quantities NAB.

If we recall that for addition: f = f(x,y) = x + y �

2 2

f x y
δ δ δ= + , and for multiplication (by a constant):

f = f(x) = k · x �
2 2

f x x
k kδ δ δ= = , we easily obtain

the uncertainty formula for unadjusted size in the IFPUG

measurement method:

() () () () () ()
2 2 2 2 2 2

11 12 13 51 52 537 10 15 7 10 15S N N N N N Nδ δ δ δ δ δ δ= + + + + + +

Although long, this formula is quite trivial, since it

derives from a linear combination of simple terms. Still,

it proves that “an error in identifying logical files is much

more impacting than an error in identifying elementary

processes”, as any experienced measurer can state by

experience, since the conventional multipliers for logical

files have higher values than for elementary processes.

For linear combination of simple terms, the reader with

no experience in derivatives can still easily derive
uncertainty propagation for other measurement methods.

In the IFPUG case, a more complex case comes from

applying the Value Adjustment Factor as currently

proposed by the method (non-ISO case). The Value

Adjustment Factor (VAF) is derived from fourteen

General System Characteristics (GSC’s) by the following

formula:
14

1

1
0.65

100 iGSC

i

VAF DI
=

= +�

where DI denotes the degree of influence of each GSC

and can only have integer values from 0 to 5. The final

function point count according to the IFPUG method is

given by the general formula:

SIZE(FP) = SIZE(UFP) × VAF = SIZE(UFP) ×
14

1

1
0.65

100 iGSC

i

DI
=

+�

What is the impact on such formula if the measurer

introduce an error on one or more of the fourteen general
system characteristics? Recalling the fractional or

765

percentage formula for multiplication, the percentage

uncertainty in this case is:

2 2

() ()

() ()

FP UFP

FP UFP

S S VAF

S S VAF

δ δ δ� � � �
= +� � � �� � � �� �

where the uncertainty on VAF is given by:

()
1 2 14

14 2
2 2 2

1

1 1
...

100 100iGSC GSC GSC GSC

i

VAF DI DI DI DIδ δ δ δ δ
=

= = + + +�

As an example, assume that the unadjusted size

measures 100 unadjusted function points, with a relative
error of ±5%, and that the degree of influence of any

GSC is assumed to be equal to 3, with an uncertainty of

±1 per GSC. Thus:

S(UFP) = 100 UFP, S(UFP) = 5 UFP,

 δS/S(UFP) = 5%

VAF = 1.07, δVAF =
1

14 0.04
100

≈ ,

 δVAF/VAF = 3.5%

and finally:
2

2

() () 2 2

() ()

0.05 0.035 0.06 6%
FP UFP

FP UFP

S S VAF

S S VAF

δ δ δ� � � �
= + = + ≈ =� � � �� � � �� �

Depending on the uncertainty on both terms (size and

value adjustment factors), the uncertainty on the final
count S is greater than each of those by a certain amount.

While in a statistical (generic) sense, we would state that

errors tend to compensate, uncertainty is always growing.

Actually, even in the discussed “simple” examples, we

must notice that some variable could result in being not

independent (several general system characteristics in

VAF can influence one each other), and that some

uncertainties also could affect one each other, as in the

case where an error on some function figure results in an

error on another function figure, in the generic formula

for size in the IFPUG model above. In such cases, the

error propagation is complicated by mutual effects, and
the concept of covariance between variable pairs should

be taken into account, with a more complex form of the

uncertainty formula (not discussed here).

 IV. APPLICATION TO SOFTWARE ESTIMATION –
MORE COMPLEX EXAMPLES

 A. Constructive Cost Model (COCOMO)

The constructive cost model [3] for work effort

estimation for software projects in its general form

proposes some simple ranges for optimistic and

pessimistic estimates as “half the original estimate” or
“twice the original estimate”. Such estimation ranges are

not formally proved. A more reliable uncertainty range

can be determined with the described approach of error

propagation. To derive the development effort for a

software program, the “zero-order” COCOMO formula

is:
By A x= ⋅

where y represents the expected work effort expressed

in person hours, and x the size in lines of code or

functions points, with factors A and B accordingly

determined by statistical regression on an historical

sample [4]. Note that having fixed statistical values for
some parameters in the model does not mean necessarily

that these values are exact: their associated errors can be

derived from the standard deviation of the statistical

sample from the fitting function y. To evaluate the error

on y, given the errors on the parameters A and B and on

the independent variable x, we have to perform some

partial derivatives, recalling that:

() () ()1
, , ln

B B B B B B
A x A B x A x x A x A x x

x A B

−∂ ∂ ∂
⋅ = ⋅ ⋅ ⋅ = ⋅ = ⋅ ⋅

∂ ∂ ∂

For instance, we perform a approximated measurement

of a project in function points, and obtain for x the

estimated value of 1,000 ± 200 FP, or a percentage

uncertainty of 20%. Assume also, as an example, that A

and B are equal to 10 ± 1 and to 1.10 ± 0.01 respectively,

in the appropriate measurement units. Collecting all data

and applying the error propagation for ∆y, we obtain:
1.1010 1,000 19,952.6By A x= ⋅ = ⋅ = (person

hours)

() () ()
2 2 2

1 lnB B B
y A B x x x A A x x Bδ δ δ δ−	
 	
 	
= ⋅ ⋅ + + ⋅ ⋅ =� � � � � �

[] [] []
2 2 2

21.948 200 1,995.262 1 137,827.838 0.01 5,015.9= × + × + × =

 (person hours)

Taking only the first significant digit of the error, we

obtain for y the estimated range 20,000 ± 5000, or a
percentage uncertainty of 25%. Note that the percent

error on y is not the simple sum of the percent errors on

A, B, and x, because the function assumed in this example

is not linear.

We consider now a further step in the COCOMO

model, where the work effort derived by statistical

parameters (nominal effort, ynom) is to be adjusted by a

series of (independent) cost drivers, ci [3]. Although for

simplicity the cost drivers assume discrete values in

practical application, we can treat them as continuous

variables. Here is a derivation of the uncertainty for the
adjusted effort estimate:

adj nom i

i

y y c= ⋅∏

,
i

i

nom i i nom i nom

i i inom j j

c

y c c y c y
y c c

∂ ∂� � � �
⋅ = ⋅ = ⋅� � � �

∂ ∂� � � �

∏
∏ ∏ ∏

For instance, if we consider ynom = 20,000 ± 5000, and a

set of only 7 factors ci, for each of which (for sake of

simplicity) we assume the same value c = 0.95 ± 0.05),
then fro yadj we obtain:

766

7
7

1

20,000 0.95 20,000 0.95 13,966.7
adj nom i

i

y y c= ⋅ = ⋅ = ⋅ =∏ ∏

2 2

2

1 7

1 7

i i

i i
adj i nom nom nom

i

c c

y c y y c y c
c c

δ δ δ δ

	
 	
� � � �
	
� � � �� � � �= + ⋅ + + ⋅ = �� � � �� � � �� �� � � � � � � �� � � �� � � �

∏ ∏
∏ �

() ()
2

2 2 71

1 7

i nom nom

i

cc
c y y

c c

� �∆∆� �
= ∆ + + + =� �� �
� � � �
∏ �

() ()
2

2 27 0.05 0.05
0.95 5,000 20,000 5,146.8 5000

0.95 0.95

� �
= ⋅ + + + =� �

� �
�

We therefore see that each additional factor in the

estimation process can apparently make the estimation

more accurate (in the given example, for instance, the yadj

is reduced with respect to its nominal value because all

the factors are smaller than 1), but its percent error is

increased (it’s now about 36%, versus the 25% of the

nominal estimate).

We can then draw a general conclusion: the more we

add information to refine an estimate, the more we’re also

adding uncertainty sources to the estimation process.
Thus, the measurer should locate the right cut-off

between accurate formulas and reasonable percentage

errors applying to those formulas. For instance, in some

cases one could decide between accepting the measured

value of each cost driver in the model, refining it (if

possible, reducing its error), or even avoiding completely

some factor from the overall model because of any

unacceptable impact on the overall uncertainty of the

estimate.

 B. Jensen/Putnam Model (Software Equation)

A general form of the systemic model by Jensen &

Putnam is [5]:

Size = (Eff / �)
1/3

 × Sched
4/3

 × Prod

where:
Size is the size in SLOC (“or other measure of amount

of function”).
Eff (effort) is the amount of development effort in

person-years.

� (beta) is a special skills factor that varies as a

function of size “from 0.16 to 0.39” (this factor has the

effect of “reducing process productivity, for estimating

purposes, as the need for integration, testing, quality

assurance, documentation, and management skills grows

with increased complexity resulting from the increase in

size” [5]).

Sched (schedule) is the development time in years.

Prod (process productivity parameter) is the
productivity number used to tune the model to the

capability of the organization and the difficulty of the

application (by calibration – the “range of values seen in

practice [for Prod] across all application types is 1,974 to

121,393” [5]).

The so-called software equation by Jensen and Putnam

can be put in several equivalent forms, depending on

which variables are considered as independent, and which

variable(s) is to be derived, for estimation purposes. As a

common scenario, assume that: Size is measured in

advance according to an appropriate measurement

method and unit, Sched is constrained by market needs

(although this may present strong risks in real world
applications), � and Prod are determined by regression

and calibration from known projects. Therefore, the effort

Eff is the dependent variable in this scenario, and its

formula is:
3

3 3 4

3 4

Size
Eff Size Prod Sched

Prod Sched

β
β − − ×

= × × × =
×

The partial derivatives of Eff with respect to the given

variables are:
3

3 4

Eff Size

Prod Schedβ

∂
=

∂ ×

2

3 4

3Eff Size

Size Prod Sched

β∂ ×
=

∂ ×

3

4 4

3Eff Size

Prod Prod Sched

β∂ − ×
=

∂ ×

3

3 5

4Eff Size

Sched Prod Sched

β∂ − ×
=

∂ ×

To instantiate the example, we can consider some

figures from [5] for a real time avionic system

(uncertainties are put by the author for the example to

follow):

Size = 40,000 SLOC in C++, with an uncertainty of ±
2,000, or 5%;

� = 0.34, with an uncertainty of ± 0.02, or approx. 5%;

Sched = 2 years, with an uncertainty of ± 0.1, or

approx. 5%;

Prod = 3,194, with an uncertainty of ± 160, or approx.

5%;

As correctly reported in [5], the expected value for

effort Eff is then equal to 41.74 person-years (approx. 500

person-months). For the uncertainty on the computed Eff,

we find:
2 2 2 2

12.42
Eff Eff Eff Eff

Eff Size Prod Sched py
Size Prod Sched

δ δβ δ δ δ
β

� �∂ � ∂ � � ∂ � � ∂ �
= + + + =� � � � � � � �

∂ ∂ ∂ ∂� � � � � �� �

that is, δEff/Eff ≈ 30%. We therefore see that mixing
four parameters in the software equation, each with an

uncertainty of approximately 5%, leads to an overall

uncertainty of 30% on the effort final estimation. From a

mathematical point of view, this is due to the highly non-
linear form of the model.

If one wants to reduce the uncertainty of the effort

estimation (provided that all figures are reliable), (s)he

can only act on the uncertainties of each parameter. To

evaluate which parameter is more influencing the error

767

propagation, we make the following assumption – we do

reduce the uncertainty on only one parameter per try,

leaving unchanged the uncertainties on the remaining

parameters.

For instance, if we put an error of only 1% on Size, we

obtain δEff/Eff ≈ 26%.

If we put an error of only 1% on β, we obtain

δEff/Eff ≈ 29%.
If we put an error of only 1% on Prod, we obtain

δEff/Eff ≈ 26%.
If we put an error of only 1% on Sched, we obtain

δEff/Eff ≈ 22%.
So, given that it is realistic to refine the estimation on

the input variables of the software equations, we should

conclude that Sched is the most impacting factor in the

Jensen & Putnam model, followed by Size and Prod in

equal measure. Such evaluation is confirmed by the

power value carried by such parameters in the software

equation.

 V. CONCLUSIONS

In real cases, the scope of a software project is often

not fully defined in early phases; the main cost driver, the
size of the project, could thus be not accurately known in

the beginning, when software estimates are more useful.

Different values estimated for the size provide different

estimates for the effort, of course, but this fact does not

provide by itself any consideration of the precision of a

single estimate. Any estimation model cannot be

seriously performed without consideration of its possible

deviations between estimates (expected values) and true

values. Also, when deriving metrics from directly

measured factors, we must consider the impact that a

(small) error in any direct measure have on the derived

metrics, depending on the algorithm or formula used to
derive them.

Considering the formal error propagation theory can

add a new perspective in the evaluation of software

metrics, in the choice of a software measurement method

when compared to others, as well as in the choice of a

software estimation approach or model among the

possible options. The quality and advantages claimed by

any method or model can be enforced or diminished

when an objective analysis of such method or model is

performed in terms of error propagation and overall

accuracy that it can offer. Error propagation theory does
provide some useful insights into such topic, from both a

theoretical (method’s/model’s form) and a practical point

of view (application in real cases).

REFERENCES

[1] Boehm, B. et al., COCOMO II Model Definition Manual,
Version 1.4, University of Southern California, 1997.
URL: http://goo.gl/jkv1ZR

[2] IFPUG, Function Point Counting Practices Manual, Version
4.3.1, International Function Point Users Group, 2010.
URL: www.ifpug.org

[3] ISBSG, Practical Project Estimation. A toolkit for estimating
software development effort & duration, International

Software Benchmarking Standards Group, 2010, URL:
http://goo.gl/QYnxHi

[4] Jensen, RW, Putnam, LH, Roetzheim, W, Software
Estimating Models: Three Viewpoints, Crosstalk, Feb.
2006. URL: http://goo.gl/84Zya4

[5] Santillo L., Error Propagation in Software Measurement &
Estimation, Proceedings of IWSM 2006 (International
Workshop on Software Measurement), November, 2-4,
2006, Potsdam (Germany)

[6] Taylor, J.R., An Introduction to Error Analysis, The Study of
Uncertainties in Physical Measurements, University

Science Books, 1982.

768

