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Abstract – The real challenge in any activity is to 

minimize as much as possible the error between an 

estimate and an actual value, whatever the 
phenomenon to be evaluated. When dealing with 

software, the number of proxies can be quite high: the 

application of an algorithm including one or more 

independent variables (measures) is finalized to 

provide one or more output variables (estimates) for a 

series of measures typically about effort, cost, time, 

quality or other aspects of the software being 

developed. Recently ISO proposed also a specific 

standard on Measurement (ISO/IEC 15939), with a 

glossary aligned to the Metrology field and to the 

International Vocabulary of Metrology (VIM).  
Estimation could be seem as a “black art”, but error is 

intrinsic in estimates and must be managed. Thus, 

regardless of the estimation model (algorithm) being 

used, practitioners must face the uncertainty aspects 

of such process: errors in initial measures do affect 

the derived metrics (or estimated values for indirect 

variables). Measurement theory does provide an 

accurate way to evaluate such error propagation for 

algorithmic derivation of variable values from direct 

measures, as in the GUM (Guide to the expression of 

Uncertainty in Measurement).  

Although some software estimation models already 
propose confidence ranges on their results, the formal 

application of error propagation can yield some 

surprising results, depending on the mathematical 

functional form underlying the model being 

examined.  Moving from a previous paper, this one 

will discuss the propagation of errors in software 

measurement and shows with some application and 

examples based on some of the most common software 

measurement methods and estimation models as 

Function Point Analysis (FPA) for product sizing 

issues and COCOMO (Cost Construction Model) for 
effort and/or duration issues as well as other ones, 

updating also the discussion to new advancement in 

the Software Quality field, in particular about product 

NFRs (Non-Functional Requirements). Few cases and 

examples will be shown, in order to stimulate a critical 

analysis for methods and models being examined from 

a possibly new perspective, with regards to the 

accuracy they can offer in practice. 

Keywords – Measurement, estimation, accuracy, 
propagation of uncertainty, error analysis. 
 

 I. INTRODUCTION 

In science, the terms uncertainties or errors do not refer 

formally to mistakes, but rather to those uncertainties that 

are inherent in all measurements and can never be 

completely eliminated. A large part of a measurer’s effort 

should be devoted to understanding these uncertainties 

(error analysis) so that appropriate conclusions can de 

drawn from variable observations. Measurements can be 

quite meaningless without any knowledge of their 
associated errors. 

In science and engineering, numbers without 

accompanying error estimates are suspect and possibly 

useless. This holds true also in software engineering – for 

every measurement, one should record the uncertainty in 

the measured quantity. 

Beyond the well-known and easily understood 

definition of systematic errors and random errors (which 

is referred to any single quantity being measured, and is 

no further examined hereby), we point our attention to the 

consequences of using measures with unavoidable errors 
within the application of some formula (algorithm) to 

derive further quantities, as is the case of total size from 

components’ size for a software system, or of effort, time 

or cost estimation from the total size of the system being 

examined. In science, this analysis is usually denoted as 

error propagation (or propagation of uncertainty). 

This paper highlights the general phenomenon, for 

which it always holds true that generic uncertainties from 

two or more deriving quantities always sum up to provide 

a larger uncertainty on the derived quantity. This also 

results in a formal approach to risk analysis, in terms of 

what-if scenarios where input quantities change with 
respect to their initial, planned, or desired values. 

 II. ERROR PROPAGATION THEORY – A SUMMARY 

When the quantity to be determined is derived from 

several measured quantities, and if the measured 

quantities are independent of each other (that is, 

contributions are not correlated), the uncertainty “�” of 

each contribution may be considered separately [1]. For 

example, suppose that we have measured the quantities 
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time t ± �t and height h ± �h for a falling mass (the �’s 

refer to the relatively small uncertainties in t and h). We 

have determined that 

h = 5.32 ± 0.02 cm 

t = 0.103 ± 0.001 s 
From physics, we can find the acceleration g from the 

relation: 

g = g(h,t) = 2h/t
2 

 
which yields g = 10.029… m/s2. (the well-known value 

for g from physics is actually g = 9.80665… m/s2). To 

find the uncertainty in the derived value of g caused by 
the uncertainties in h and t, we consider separately the 

contribution due to the uncertainty in h and the 

contribution due to the uncertainty in t, combined in 

quadrature: 

2 2

t hg g g
δ δ δ= +  

where for instance we denote the contribution due to 

the uncertainty in t by the symbol �g
t
 (read as “delta-g-t” 

or “uncertainty in g due to t”). The basis of the quadrature 

addition is an assumption that the measured quantities 

have a normal, or Gaussian, distribution about their mean 

values. 

A typical method by which one may calculate the 

contributions of direct measured independent variables in 

the dependent variable being derived is the derivative 

method. The basic idea is to determine by how much the 

derived quantity would change if any of the independent 

variables were changed by its uncertainty. 

Let the function f = f(x1, …, xN) be the formula used to 
derive the dependent variable f from the N independent 

variables xi, …, xN, and let δxi be the estimated error on 
the value measured for each variable xi. That is, the true 

value of xi belongs to the interval (xi ± δxi) for each i from 
1 to N. Then the true value of f belongs to the interval 

[f(x1, …, xN) ± δf], where δf is given from the derivatives 
formula: 

 
2 22

1

1 1

N

i N

i i N

f f f
f x x x

x x x
δ δ δ δ

=

� � � �� �∂ ∂ ∂
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The derivative (�f/�xi) is a partial derivative (simply 

put, when taking a partial derivative with respect to one 

variable, treat any other variable as constant). Since each 

uncertain variable will increase, not decrease the final 

uncertainty, we put the uncertainty in f due to the 

uncertainty in xi as the absolute value. In the cited 

example for acceleration g = g(h,t) we have: 
 

3
4

tg t t
g t h tδ δ δ= ∂ ∂ = −  

2
2

hg h h
g h tδ δ δ= ∂ ∂ =  

so that: 
2 2

2 2 2 2

3 2

4 2
19.8 cm/s 0.2 m/s

t hg g g t h

h

t t
δ δ δ δ δ

� � � �
= + = + = ≈� � � �

� � � �

 

 
For simple formulas, as addiction, subtraction, 

multiplication and division of two variables, one can 

easily find that the uncertainty is calculated as in the 

following. 

If f = f(x,y) = x + y, then 
2 2

f x y
δ δ δ= + . 

If f = f(x,y) = x - y, then also 
2 2

f x y
δ δ δ= +  

(uncertainties always add). 

If f = f(x,y) = x · y, then 
2 2 2 2

f x y
y xδ δ δ= + . 

If f = f(x,y) = x / y, then 
2 2

2 2

2

1
f y x

x

y y
δ δ δ

� � � �
= +� � � �

� � � �

. 

 
Notice how the variables values are mixed together in 

the uncertainty calculation for multiplication and 

division. It’s also worth pointing out that fractional or 

percentage uncertainties in multiplication and division 

behave much like absolute uncertainties in addition. In 

other words, f = f(x,y) = x · y: 
22 2 2 2 2

x yf yx
y x

f xy x y

δ δδ δδ+ � �� �
= = + � �� �

� � � �

 

with the same result holding if f = f(x,y) = x / y. 

If either x or y is a constant or has a relatively small 

fractional uncertainty, then it can be ignored and the total 

uncertainty is just due to the remaining term. 

Furthermore, if one of the measured quantities is raised 

to a power, the fractional or percentage uncertainty due to 

that quantity is merely multiplied by that power before 

adding the result in quadrature. For the original example: 

 

( ) ( )
2 2

3 2 22

2

4 2 2

2

t hg yt
h t t

g h t t y

δ δδ δδ+ � �� �
= = + � �� �

� � � �

 

For the values in our example, �h/h = 0.5% and �t/t = 

1% (so 2 �t/t = 2%), so we can see that the contribution 

from the uncertainty in h is negligible compared to the 

contribution from t. We can therefore conclude (as 

confirmed by previous calculation) that the fractional 

uncertainty in our measured result for g is about 2%: 

g = 10.0 ± 0.2 m/s
2
 

 

As a reference, table 1 shows the uncertainty of simple 

functions, resulting from independent variables A, B, C, 

with uncertainties �A, �B, �C, and a precisely-known 

constant c. 
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Table 1. Example formulas. 

Function Function uncertainty 

X = A ± B (�X)² = (�A)² + (�B)² 

X = cA �X = c �A 

X = c(A×B) or X = 
c(A/B) 

(�X/X)² = (�A/A)² + 
(�B/B)² 

X = cAn �X/X = |n| (�A/A) 

X = ln (cA) �X = �A/A 

X = exp(A) �X/X = �A 

 

 III. APPLICATIONS TO SOFTWARE 
MEASUREMENT – A SIMPLE EXAMPLE 

Generally, when measuring the functional size the 

measurer has to: 

• identify (classify & count) the base functional 

components; 

• assign a size value to each component; 

• combine the information above. 
 

For instance, in the IFPUG method [2] one has to 

identify logical files and elementary processes. Logical 

files are classified as “internal” (ILF) or “external” (EIF) 

with respect to the boundary of the software being 

measured, with different size assignments on a low – 

average – high complexity scale: 7/10/15 and 5/7/10 

unadjusted function points, respectively. Elementary 

processes are classified as “input” (EI), “output” (EO), 
and “enquiry” (EQ) with respect to the processing logic 

being performed, with different size assignments on a 

low/average/high complexity scale: 3/4/6 for inputs and 

enquiries, 4/5/7 for outputs. 

The (unadjusted) functional size formula for 

IFPUG could be expressed as: 
SIZE(UFP) = 7 × NILF-LOW + 10 × NILF-

AVERAGE + 15 × NILF-HIGH +  

   5 × NEIF-LOW + 7 × NEIF-

AVERAGE + 10 × NEIF-HIGH +  

   3 × NEI-LOW + 4 × NEI-

AVERAGE + 6 × NEI-HIGH +  
   4 × NEO-LOW + 5 × NEO-

AVERAGE + 7 × NEO-HIGH +  

   3 × NEQ-LOW + 4 × NEQ-

AVERAGE + 6 × NEQ-HIGH 

 
With respect to such formula, if the measurer fails in 

identifying a function (file or process) and/or (s)he counts 
a function that should NOT be counted according to the 

measurement rules, (s)he is introducing an error in a 

single value for NA-B where “A” denotes the type of the 

function, and “B” the complexity rating. If the measurer 

is correct in identifying a function, but (s)he assign the 

wrong complexity value to it, (s)he introducing a double 

error, since the function is NOT counted under the correct 

figure AND it is wrongly counted under another figure. 

For sake of readability, we rewrite the formula in 

abbreviated form as: 

S = S(N11, N12, N13,…,N51) = 

7N11 + 10N12 + 15N13 +7N21 + 10N22 + 15N23 + 

7N31 + 10N32 + 15N33 +7N41 + 10N42 + 15N43 

+7N51 + 10N52 + 15N53 

 
This formula is easily recognized as a combination of 

additions and multiplications, where the multiplication 

coefficients are fixed by definition of the measurement 

methods, and the measures has to determine fifteen 

quantities NAB. 

If we recall that for addition:  f = f(x,y) = x + y  �  

2 2

f x y
δ δ δ= + , and for multiplication (by a constant):  

f = f(x) = k · x  �  
2 2

f x x
k kδ δ δ= = , we easily obtain 

the uncertainty formula for unadjusted size in the IFPUG 

measurement method: 

( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2 2 2

11 12 13 51 52 537  10  15  ... ... 7  10  15S N N N N N Nδ δ δ δ δ δ δ= + + + + + +

 
Although long, this formula is quite trivial, since it 

derives from a linear combination of simple terms. Still, 

it proves that “an error in identifying logical files is much 

more impacting than an error in identifying elementary 

processes”, as any experienced measurer can state by 

experience, since the conventional multipliers for logical 

files have higher values than for elementary processes. 

For linear combination of simple terms, the reader with 

no experience in derivatives can still easily derive 
uncertainty propagation for other measurement methods. 

In the IFPUG case, a more complex case comes from 

applying the Value Adjustment Factor as currently 

proposed by the method (non-ISO case). The Value 

Adjustment Factor (VAF) is derived from fourteen 

General System Characteristics (GSC’s) by the following 

formula: 
14

1

1
0.65

100 iGSC

i

VAF DI
=

= +�  

where DI denotes the degree of influence of each GSC 

and can only have integer values from 0 to 5. The final 

function point count according to the IFPUG method is 

given by the general formula: 

SIZE(FP) = SIZE(UFP) × VAF = SIZE(UFP) × 
14

1

1
0.65

100 iGSC

i

DI
=

+�  

What is the impact on such formula if the measurer 

introduce an error on one or more of the fourteen general 
system characteristics? Recalling the fractional or 
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percentage formula for multiplication, the percentage 

uncertainty in this case is: 

2 2

( ) ( )

( ) ( )

FP UFP

FP UFP

S S VAF

S S VAF

δ δ δ� � � �
= +� � � �� � � �� �

 

where the uncertainty on VAF is given by: 

( )
1 2 14

14 2
2 2 2

1

1 1
...

100 100iGSC GSC GSC GSC

i

VAF DI DI DI DIδ δ δ δ δ
=

= = + + +�

 
As an example, assume that the unadjusted size 

measures 100 unadjusted function points, with a relative 
error of ±5%, and that the degree of influence of any 

GSC is assumed to be equal to 3, with an uncertainty of 

±1 per GSC. Thus: 

S(UFP) = 100 UFP, S(UFP) = 5 UFP,

 δS/S(UFP) = 5% 

VAF = 1.07, δVAF = 
1

14 0.04
100

≈ ,

 δVAF/VAF = 3.5% 

and finally: 
2

2

( ) ( ) 2 2

( ) ( )

0.05 0.035 0.06 6%
FP UFP

FP UFP

S S VAF

S S VAF

δ δ δ� � � �
= + = + ≈ =� � � �� � � �� �

 

Depending on the uncertainty on both terms (size and 

value adjustment factors), the uncertainty on the final 
count S is greater than each of those by a certain amount. 

While in a statistical (generic) sense, we would state that 

errors tend to compensate, uncertainty is always growing. 

Actually, even in the discussed “simple” examples, we 

must notice that some variable could result in being not 

independent (several general system characteristics in 

VAF can influence one each other), and that some 

uncertainties also could affect one each other, as in the 

case where an error on some function figure results in an 

error on another function figure, in the generic formula 

for size in the IFPUG model above. In such cases, the 

error propagation is complicated by mutual effects, and 
the concept of covariance between variable pairs should 

be taken into account, with a more complex form of the 

uncertainty formula (not discussed here). 
 

 IV. APPLICATION TO SOFTWARE ESTIMATION – 
MORE COMPLEX EXAMPLES 

 A. Constructive Cost Model (COCOMO) 

The constructive cost model [3] for work effort 

estimation for software projects in its general form 

proposes some simple ranges for optimistic and 

pessimistic estimates as “half the original estimate” or 
“twice the original estimate”. Such estimation ranges are 

not formally proved. A more reliable uncertainty range 

can be determined with the described approach of error 

propagation. To derive the development effort for a 

software program, the “zero-order” COCOMO formula 

is: 
By A x= ⋅  

where y represents the expected work effort expressed 

in person hours, and x the size in lines of code or 

functions points, with factors A and B accordingly 

determined by statistical regression on an historical 

sample [4]. Note that having fixed statistical values for 
some parameters in the model does not mean necessarily 

that these values are exact: their associated errors can be 

derived from the standard deviation of the statistical 

sample from the fitting function y. To evaluate the error 

on y, given the errors on the parameters A and B and on 

the independent variable x, we have to perform some 

partial derivatives, recalling that: 

( ) ( ) ( )1
, , ln

B B B B B B
A x A B x A x x A x A x x

x A B

−∂ ∂ ∂
⋅ = ⋅ ⋅ ⋅ = ⋅ = ⋅ ⋅

∂ ∂ ∂

 

For instance, we perform a approximated measurement 

of a project in function points, and obtain for x the 

estimated value of 1,000 ± 200 FP, or a percentage 

uncertainty of 20%. Assume also, as an example, that A 

and B are equal to 10 ± 1 and to 1.10 ± 0.01 respectively, 

in the appropriate measurement units. Collecting all data 

and applying the error propagation for ∆y, we obtain: 
1.1010 1,000 19,952.6By A x= ⋅ = ⋅ =  (person 

hours) 

( ) ( ) ( )
2 2 2

1 lnB B B
y A B x x x A A x x Bδ δ δ δ−	 
 	 
 	 
= ⋅ ⋅ + + ⋅ ⋅ =� � � � � �

 

[ ] [ ] [ ]
2 2 2

21.948 200 1,995.262 1 137,827.838 0.01 5,015.9= × + × + × =

 (person hours) 
 

Taking only the first significant digit of the error, we 

obtain for y the estimated range 20,000 ± 5000, or a 
percentage uncertainty of 25%. Note that the percent 

error on y is not the simple sum of the percent errors on 

A, B, and x, because the function assumed in this example 

is not linear. 

We consider now a further step in the COCOMO 

model, where the work effort derived by statistical 

parameters (nominal effort, ynom) is to be adjusted by a 

series of (independent) cost drivers, ci [3]. Although for 

simplicity the cost drivers assume discrete values in 

practical application, we can treat them as continuous 

variables. Here is a derivation of the uncertainty for the 
adjusted effort estimate: 

adj nom i

i

y y c= ⋅∏  

,
i

i

nom i i nom i nom

i i inom j j

c

y c c y c y
y c c

∂ ∂� � � �
⋅ = ⋅ = ⋅� � � �

∂ ∂� � � �

∏
∏ ∏ ∏  

For instance, if we consider ynom = 20,000 ± 5000, and a 

set of only 7 factors ci, for each of which (for sake of 

simplicity) we assume the same value c = 0.95 ± 0.05), 
then fro yadj we obtain: 
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7
7

1

20,000 0.95 20,000 0.95 13,966.7
adj nom i

i

y y c= ⋅ = ⋅ = ⋅ =∏ ∏  

2 2

2

1 7

1 7

i i

i i
adj i nom nom nom

i

c c

y c y y c y c
c c

δ δ δ δ

	 
 	 
� � � �
	 
� �  �  �� � � �= + ⋅ + + ⋅ = �� �  �  �� � � �� �� � � � � � �  �� � � �� � � �

∏ ∏
∏ �

( ) ( )
2

2 2 71

1 7

i nom nom

i

cc
c y y

c c

� �∆∆� �
= ∆ + + + =� �� �
� � � �
∏ �

 

( ) ( )
2

2 27 0.05 0.05
0.95 5,000 20,000 5,146.8 5000

0.95 0.95

� �
= ⋅ + + + =� �

� �
�  

 
We therefore see that each additional factor in the 

estimation process can apparently make the estimation 

more accurate (in the given example, for instance, the yadj 

is reduced with respect to its nominal value because all 

the factors are smaller than 1), but its percent error is 

increased (it’s now about 36%, versus the 25% of the 

nominal estimate). 

We can then draw a general conclusion: the more we 

add information to refine an estimate, the more we’re also 

adding uncertainty sources to the estimation process. 
Thus, the measurer should locate the right cut-off 

between accurate formulas and reasonable percentage 

errors applying to those formulas. For instance, in some 

cases one could decide between accepting the measured 

value of each cost driver in the model, refining it (if 

possible, reducing its error), or even avoiding completely 

some factor from the overall model because of any 

unacceptable impact on the overall uncertainty of the 

estimate. 

 B. Jensen/Putnam Model (Software Equation) 

A general form of the systemic model by Jensen & 

Putnam is [5]: 

Size = ( Eff / � )
1/3

 × Sched
4/3

 × Prod 

where: 
Size is the size in SLOC (“or other measure of amount 

of function”).  
Eff (effort) is the amount of development effort in 

person-years.  

� (beta) is a special skills factor that varies as a 

function of size “from 0.16 to 0.39” (this factor has the 

effect of “reducing process productivity, for estimating 

purposes, as the need for integration, testing, quality 

assurance, documentation, and management skills grows 

with increased complexity resulting from the increase in 

size” [5]).  

Sched (schedule) is the development time in years. 

Prod (process productivity parameter) is the 
productivity number used to tune the model to the 

capability of the organization and the difficulty of the 

application (by calibration – the “range of values seen in 

practice [for Prod] across all application types is 1,974 to 

121,393” [5]). 

 

The so-called software equation by Jensen and Putnam 

can be put in several equivalent forms, depending on 

which variables are considered as independent, and which 

variable(s) is to be derived, for estimation purposes. As a 

common scenario, assume that: Size is measured in 

advance according to an appropriate measurement 

method and unit, Sched is constrained by market needs 

(although this may present strong risks in real world 
applications), � and Prod are determined by regression 

and calibration from known projects. Therefore, the effort 

Eff is the dependent variable in this scenario, and its 

formula is: 
3

3 3 4

3 4

Size
Eff Size Prod Sched

Prod Sched

β
β − − ×

= × × × =
×

 
The partial derivatives of Eff with respect to the given 

variables are: 
3

3 4

Eff Size

Prod Schedβ

∂
=

∂ ×
 

2

3 4

3Eff Size

Size Prod Sched

β∂ ×
=

∂ ×
 

3

4 4

3Eff Size

Prod Prod Sched

β∂ − ×
=

∂ ×
 

3

3 5

4Eff Size

Sched Prod Sched

β∂ − ×
=

∂ ×
 

To instantiate the example, we can consider some 

figures from [5] for a real time avionic system 

(uncertainties are put by the author for the example to 

follow): 

Size = 40,000 SLOC in C++, with an uncertainty of ± 
2,000, or 5%; 

� = 0.34, with an uncertainty of ± 0.02, or approx. 5%; 

Sched = 2 years, with an uncertainty of ± 0.1, or 

approx. 5%; 

Prod = 3,194, with an uncertainty of ± 160, or approx. 

5%; 

As correctly reported in [5], the expected value for 

effort Eff is then equal to 41.74 person-years (approx. 500 

person-months). For the uncertainty on the computed Eff, 

we find: 
2 2 2 2

12.42
Eff Eff Eff Eff

Eff Size Prod Sched py
Size Prod Sched

δ δβ δ δ δ
β

� �∂ � ∂ � � ∂ � � ∂ �
= + + + =� � � � � � � �

∂ ∂ ∂ ∂� � � � � �� �

 

 

that is, δEff/Eff ≈ 30%. We therefore see that mixing 
four parameters in the software equation, each with an 

uncertainty of approximately 5%, leads to an overall 

uncertainty of 30% on the effort final estimation. From a 

mathematical point of view, this is due to the highly non-
linear form of the model. 

If one wants to reduce the uncertainty of the effort 

estimation (provided that all figures are reliable), (s)he 

can only act on the uncertainties of each parameter. To 

evaluate which parameter is more influencing the error 
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propagation, we make the following assumption – we do 

reduce the uncertainty on only one parameter per try, 

leaving unchanged the uncertainties on the remaining 

parameters. 

For instance, if we put an error of only 1% on Size, we 

obtain δEff/Eff ≈ 26%. 

If we put an error of only 1% on β, we obtain 

δEff/Eff ≈ 29%. 
If we put an error of only 1% on Prod, we obtain 

δEff/Eff ≈ 26%. 
If we put an error of only 1% on Sched, we obtain 

δEff/Eff ≈ 22%. 
So, given that it is realistic to refine the estimation on 

the input variables of the software equations, we should 

conclude that Sched is the most impacting factor in the 

Jensen & Putnam model, followed by Size and Prod in 

equal measure. Such evaluation is confirmed by the 

power value carried by such parameters in the software 

equation. 

 V. CONCLUSIONS 

In real cases, the scope of a software project is often 

not fully defined in early phases; the main cost driver, the 
size of the project, could thus be not accurately known in 

the beginning, when software estimates are more useful. 

Different values estimated for the size provide different 

estimates for the effort, of course, but this fact does not 

provide by itself any consideration of the precision of a 

single estimate. Any estimation model cannot be 

seriously performed without consideration of its possible 

deviations between estimates (expected values) and true 

values. Also, when deriving metrics from directly 

measured factors, we must consider the impact that a 

(small) error in any direct measure have on the derived 

metrics, depending on the algorithm or formula used to 
derive them. 

Considering the formal error propagation theory can 

add a new perspective in the evaluation of software 

metrics, in the choice of a software measurement method 

when compared to others, as well as in the choice of a 

software estimation approach or model among the 

possible options. The quality and advantages claimed by 

any method or model can be enforced or diminished 

when an objective analysis of such method or model is 

performed in terms of error propagation and overall 

accuracy that it can offer. Error propagation theory does 
provide some useful insights into such topic, from both a 

theoretical (method’s/model’s form) and a practical point 

of view (application in real cases). 
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